Overview: models, space, and time




Models are fundamental to
science and engineering

What makes an effective model
of a complex system like the brain?



In theory there is no difference
between theory and practice.
In practice there is.

Attributed variously to baseball player Yogi Berra, computer scientist
Jan L. A. van de Snepscheut and physicist Albert Einstein.

c2.com/cgi/wiki?DifferenceBetweenTheoryAndPractice



Robots as model organisms

A computational model is a way of integrating a
variety of constraints known or suspected about a
system:

1. structure — cell types and connectivity;
2. dynamics — molecular, cellular, and systems levels;
3. function — a computational task that it performs.

An autonomous robot is a
computational model with a
physical body.

4. Environment - It needs to solve
tasks in an environment.




Robots in model worlds

artificiallworlds; simulation worlds; fully embodied

Artificial world Simulation world Real world

iRat V2

Artificial worlds: fully flexible design \.f- Pioneer
= & iRat V1
Simulation worlds: as real as theory allows, ]
typically no noise =
Real world robots need to deal with physics using
a fully functional sensory-motor system, energy

and noise. _ ,
Michael Milford David Ball, Scott Heath
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Video by UQ School of Journalism and Communication
John Harrison, Matti Crocker, Bruce Redman, Carmel Rooney





Mass 0.6kg
Size 170mm long

Vision via
webcam

Local Communication via
speakers and microphone

Avoidance via IR
sensors

Local control via

LCD and navpad Brain via x86 PC 1GHz

CPU (RoBoard)

Distributed
intelligence via
WLAN antenna

Mobility via
wheels (over
1.5m/s)

Energy via Battery (2
hours continuous
use)

Robot Operating
System (ROS)
(Windows or Linux)

Ball, Heath, Milford, Wyeth and Wiles (2010) A Navigating Rat Animat, Alife XII



2 key issues:

Rat meets iRat safety and engagement

4 N 4 N

Excellent navigator, flexible,
curious, will
chew exposed wires,
easily frightened,

iRat
(intelligent rat animat
technology)

Rat

PC on wheels

Size is the key challenge for can be aggressive
the design of a robot that

k interacts with a rat / k /

David Ball, Scott Heath, in collaboration with Andrea Chiba and Laleh Quinn, UCSD
ARC Thinking Systems; Temporal Dynamics of Learning Center




2 key issues:

Rat meets safety and engagement

David Ball, Scott Heath, in collaboration with Andrea Chiba and Laleh Quinn, UCSD
ARC Thinking Systems; Temporal Dynamics of Learning Center




iRats as model organisms

4 N

iRat strengths
PC on wheels, flexible
wifi for web, cloud, GPUs
virtual reality, real world
open source

e Safe around real rats
\ %
4 )

monitors it own battery and
recharges autonomously

N

/ Platform for

systems neuroscience

bio-inspired robotics

social interaction

embodied

cognition

cognitive architecture grounded in

space

_/

@ts with different sensors and mapping systems h

conversation

| Left iRat: laser scanner and
3 occupancy grid;
~" Right iRat: forward facing

| camera and bio-inspired
. topological map.

Ball, Heath, Milford, Wyeth and Wiles (2010) A Navigating Rat Animat, Alife XII

(Heath et al, ICRA 2013)j
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Space is all around us, but you can’t
see it, hear it or touch it.

How do brains represent something that
doesn’t change when senses change?



From robot navigation to hippocampal function

Robots

Biology

Pose Cells / Grid
Cells

Encoding of XYO
input

Entorhinal Cortex
EC2 -> CA3
EC3 -> CA1l

Experience Map

DG — tag for new
experience

CA3 —recurrent
connection, old
experience recall

Dentate Gyrus
CA1,CA2,CA3
Subiculum

View Cells provide
the landmarks

Parietal Cortex

Major regions in hippocampus

TRENDS in Neuroscien

Interneuron diversity series, Buzsaki, et al.

Dentate
gyrus

Entorhinal |

cortex

Aimone Deng Gage TICS 2010



Computational Model of Dentate
Gyrus with Neurogenesis

GABA depolarizing GABA depolarizing

. . . B
Multi-layer simulation of dentate A ,
. . | Lateral Entorhinal Cortex' $ %
gyrus circuit | Medial Entorhinal Cortexl
50-1000 neurons per layer ¥ ¥ 1 e o

Biologically-defined

Granule Basket

} T a

physiology and connectivity

Input layers (entorhinal : (uitar ] [ Mossy] |1

cortex) represent spatial and (s 1O CAS | GABAInhibiony  GABAInhitory

e o SRy GABA nibitory
Continuous neurogenesis D

Gradual process

Based on biological Initialize G’?l:u‘fgg':::;i‘;"th No NG

maturation profile o e
Model initialized by “growing” in layer  { Env1 | Env2 | Env3 | Envd
series of four distinct environments Day 0 40 80 120 160

Last environment with or
without neurogenesis

Aimone Wiles Gage Nature Neuroscience 2006; Aimone Wiles Gage Neuron 2009



Environmental Commitment of Adult-born
Neurons

Grow GC layer with No NG
heurogenesis

* Neurons learn to represent < NG
environment present during szzazs: : 5
maturation Day o Lo
* Prolonged exposure to environment

will result in a population of DG

granule cells that are “specialized” to

that environment

Hypothesis: The specialization of
young neurons to the environments
present during maturation allows
improved encoding of new memories
that relate to previously experienced ke
contexts. v DN B S O

0 200 400 600 &00 1000 1200 14C
<—0LDER——Granule cell-——YOUNGE

=
oldest youngest
newborn cells

environments

Aimone Wiles Gage Nature Neuroscience 2006; Aimone Wiles Gage Neuron 2009



RatSLAM: Micro-experiences create a network of sense
impressions (views) linked by motor actions (odometry)

i
T

The pose cell network combines
position and head direction

\relative to the previous moment/

View

15
Milford and Wyeth, RatSLAM, 2010; Ball et al 2013 open source RatSLAM



Closing the loop is the heart of spatial cognition:

The iRat’s algorithm is RatSLAM (Milford&WYyeth)

Local View Cells

. ‘..4'

Local View — Expericnce Expected_pose A'of experience
A relative to experience D,

Local View — Pose

s Map Associations 3
Associations P A based on dead reckoning
Xy wrapping sl
connectivity \: T~
= \: o P D

—~
~
‘a‘"\

A
\
\
\ ! Dead reckoning
1
I
I
!
1
/

| trajectory between

1 experiences
/

Pose Cell — Experience
Map Associations

/

Pose Cells

& wrapping connectivity

y
| : X Experience Map Space
The pose cell network combines position and head
direction relative to where you were a moment ago



Open RatSLAM

Simultaneous localisation and mapping

Overhead view of

environment
The OpenRatSLAM module structure

camera

Pose Cells and
image data Visual Template vEi Experience Map
Matcher Node Creation /
Recognition

Image Stream

create node
create edge
set node

image data
frame id

Experience Map

Visual Od t
isual Odometry Graph Relaxation

topelogical map
(ROS structure?)

rVis (topographical

Wheel Od t
ee ometry map visualization)

Wheel encoders

OpenRatSLAM: An Open Source Brain-Based Robotic SLAM System
Ball, Heath, Wiles, Wyeth, Corke, Milford (2013), in press. 17



Bio-inspired navigation

Mapping by David Ball, Scott Heath and Michael Milford
OpenRatSLAM: An Open Source Brain-Based Robotic SLAM System




Robots (and different neural regions) can
model'space as occupancy grids or paths

Heath et al, ICRA 2013



Time has an explicit role in dynamical systems.

What is time in neural computation
(biological and modeled systems)?




Q. What is the “right”
abstraction?

A. modelling biology;
modelling physics;
modelling chemistry;
real computation

Dynamics occurs at
multiple scales.
Does computation?




Forms of computation

A Turing machine can compute
any computable function

~
4 So

Random access memory ,/' S
/ —
/ -

Turing machine
read/write head and tape
(Artist’s impression)

‘ | |

230 A. M. Toaive

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPI

By A. M. Torme
[Recsived 28 Mag, 1830.—Road 12 Kaversber, 1836:]

The “computable’” numbers may be described briefly as the real
mumbers whose exprossions as a decimal aro calsulable by finite means.
Although the subjeat of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or o real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
howeve, the same in each case, and 1 have chasen the compitable umbers
for explicit treatniont as involving tho lest cumbrous technigue. T hope
shortly to give an account of the relations of the computable numbers,
functions, and sa forth to one another. This will include a developmer
of the theory of functions of & real variable expressed in terms of com
putable numbers. According to my dofinition, a number is computable
if its decimal can be written down by a machine.

In§§0.101 with tthe
computable numbers inelude all numbers which could naturally be
regarded as eomputable. Tn particular, T show that certain luge classes
of numbers are computable, They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions
the numbers , ¢, ete. The computable numbers do not, however, include
all éefinable numbers, and an example is given of o definable number
which i ot computabls

Although the class of computable numbers is o great, and in many
ways similar to the class of real numbers, it is nevorthelsss enumerable.
Tn § 8 I examine certain arguments which would ssem to prove the contrary.
By the correct application of one of theso arguments, eonclusions are
reached which are superficially similar 10 those of Godelf. These results

s Satze dor Prin

vr for
- Phye., 38 (1931}

ia Mathematicn wnd ver
5

oihee M

http://en.wikipedia.org/wiki/File:Maquina.png



http://en.wikipedia.org/wiki/File:Maquina.png�

Theoretical computer science distinguishes between
the computability of a function and its complexity
(in terms of the resources that it uses).

Main resources used by algorithms are
time and space.

Spiking network models have more powerful
resource usage than rate coded neural networks
(but they are still not the preferred model for
engineers and machine learning).



What is computation in
a neural system and
how does it differ from
dynamics?

The dominant model in
computational
neuroscience is that the
neuron is the computing
element of the brain.

What else performs
computation?

24




Spikes are used in many different coding schemes

Spiking networks are more frequently studied as complex
dynamical systems than as computational devices.

(This needs to change for dynamics to be used for computational purposes)

GFP 3 |
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-
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1oo | | ] | : - i

3&2_0 23222 23249 =232 .6 P = S3ZF=0 =23=3.2 .44

Complex Spiking Network (CSN)
Spontaneous entry and exit from seizure [Pete Stratton]
25



Resonators: Spike time robotics

Spiking neural circuit to direct the
iRat’s movement towards a temporal
code of an appropriate frequency

u Resonator
E d ge "“‘ .OO.‘.’.“

Detector

Janet Wiles, David Ball, Scott Heath, Chris Nolan and Peter Stratton (2010) Spike-Time Robotics: A Rapid Response Circuit for a Robot that Seeks
Temporally Varying Stimuli, 17th International Conference on Neural Information Processing (ICONIP)



computational function

Fast spike response times in
CA3 signal familiarity

Neuron #
DG

ol

A race with a

Novel pattern

(before learning)

(a) Dentate
gyrus

[ Entorhinal ]

cortex

Familiar pattern
(after learning)

DGi CA3 CA3i

M 7 N
. O .
I. | CA3 3 I | ca3
- - A St
| I
| L
| : |
|" .| DG sl [} DG
L L
| . | .
EC2 |- | Ec2 |1
0“_' ,762 * 7.b4 7.|06 7.68 * 7.|10 7.I12 7.14 I?.84- i.;ﬁ. '9.|88 9.§0 9.|92 9.|94 9.|96 9.98
Time (s) - J Time (s)

Nolan Wyeth Milford & Wiles Hippocampus 2010



Message of the Race model:

D . 4 . ., Entorhinal =
a pattern signals its own novelty by its microtiming cortex \ d

How does the race influence the circuit dynamics?

e If signals into CA3 arrive faster on the direct route
from EC2 than from DG, it can indicate a familiar

memory.

e Otherwise it can indicate a new memory and
create a new CA3 attractor.

Memory can also be intentionally .-| S

directed to recall or learning by . : /__ i & o /.f’

synaptic modulation of CA3. NN e
} ¥ ot /}///;/



An algorithm for sequence learning
based on spike transmission delays

In neural systems, timing is critical
at the millisecond level.

Real neural systems:

e |earn temporal order in perceptual input, motor control,
coordination and memory tasks

 become faster with increased experience

e can change if the stimuli changes
e don’t need explicit reward to learn

i

* can learn sequences in one or a few trials AL g Ty ""l'fh 1l
EII HHMFI I ||II ||\EIII#III E“M ﬁ‘
“ I IIJIIIIIIIF | III|I| Illlllm I|II| \Illrll in
- |I|I I|I | - I \III|| ﬂl}l III IllhlllIl |
: | fl I l “ |
.-.lIIIlIhIIIIIIJlIlllulll|| Illlrllll\Il {11 TN III I i
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Spike delay variance learning (SDVL)
An algorithm for sequence learning

Gaussian Synapse Model
—(to—p)*
| = pe 2V
* where:

— pis the peak postsynaptic current

— 1, is the time since a presynaptic spike in ms (t, 2 0)
— puis the mean
— Vv is the variance

The ‘weight’ of a synapse is the integral of the curve, so
p is varied to match a given integral

 Hence each synapse has 3 parameters (u, v and
integral)

Wright and Wiles, IJCNN (2012)  *°



Post synaptic release
profile adapting delay

mean p, and variance v Single synapse
adapting both p and v
(1+1 EA, 50 updates)

Low variance (V< 0.1): 05 -
current is delivered
as a single burst at

delay p
High variances (V >5):

current is slowly
released, peaking at

delay LL 0 5 10 15 20 25 30
Initial Target
p=35;v=l1 n=25

Wright and Wiles (2012) >



Spike Delay-Variance Learning (SDVL) Algorithm

The change of mean, Ay, is determined by:

sgn(to —wkn,  if lto—ulza
Ap = —kn,, if to=a,
0, otherwise
where:
t, is the time difference between the presynaptic and postsynaptic spike (ms)
M is the mean of the synapse in milliseconds [min 0, max 15]
v is the variance of the synapse [min 0.1, max 10]
k(v) is the learning accelerator, here k = (v + 0.9)2

n, is the mean learning rate
a,, 0, are constants

The change of variance, Av, is determined by:

knw if |tD o aul = ﬁl
Av = _knv: if |tD o ;ul = BE
0, otherwise
where:

n, is the variance learning rate
B., B, are constants

Wright and Wiles (2012) 5



Sequence recognition task results

on Supemnvised Learning State
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Winner Takes All Spiking Network
with spike delay variance learning (SDVL)

sequence presented every period I m p I e m e n tat i O n n OteS

Y P 'Y Learning multiple sequences
mput1 | Input 2 — works best when:

* neurons return to baseline
before each presentation
(period < 5-10H2)

» the integral of all the synapses
IS a constant

e the same number of input
neurons fire within 15ms at

2-layer spiking network each presentation (at least 3-5)
gaussian synapses + SDVL
winner-take-all output layer

Static Inhibitory Synapses (no delay)

Wright and Wiles (2012) >



Onset-offset responses from
differences between video frames

P

Moving forwards Moving forwards Turning right
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Dynamic Vision Sensor (DVS128) ‘

asynchronous temporal contrast
silicon retina www.inilabs.com

No video frames: address-
event representation
(AER) only transmits local
pixel-level changes

Output is a stream of
events at microsecond
time resolution

Power, data storage and
computational
requirements are
drastically reduced, and
dynamic sensor range is
Increased by orders of
magnitude.




Summary: Neural codes for time and space

Neural computing is not
just about information
carried by spikes.

An embodied organism is a
multi-scale dynamical
system that gives rise to
and interprets spikes.

Every level in a biological
system has rich dynamics
and signals about those
dynamics.

L() ‘l" #ha b,
. A
WS,
(L 2.5wk
GABA inhibitory
Glutamate excitatory

Micro-timing enables a
pattern to signal its own
novelty

Maturation processes can
enhance capacity for
specific environments

Dendritic computation
enables direct learning of
delays in sequences

37



Future directions in Bio-inspired computation
Rethinking the role of time in processing

Clock-free: spiking neuron as an

asynchronous micro-pipeline

Grid-free: topological graphs with
local metric structure and global
regularization

Scale-free and symbol-free: multi-
scale recurrent networks

iRat: Neurorobotic platform to
address all 4 challenges

ba dii guuu
t-d

dii

ba dii guuu
t+d
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