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Overview: models, space, and time  



Models 

Models are fundamental to  
science and engineering 

 

What makes an effective model  
of a complex system like the brain?  



In theory there is no difference 
between theory and practice.  

In practice there is.  

 Attributed variously to baseball player Yogi Berra, computer scientist  
Jan L. A. van de Snepscheut and physicist Albert Einstein. 

 
 c2.com/cgi/wiki?DifferenceBetweenTheoryAndPractice 



Robots as model organisms 

A computational model is a way of integrating a 
variety of constraints known or suspected about a 
system: 
  
1. structure – cell types and connectivity;  
2. dynamics – molecular, cellular, and systems levels;  
3. function – a computational task that it performs.  

 
An autonomous robot is a 
computational model with a 
physical body. 
 
4. Environment - It needs to solve 
tasks in an environment. 



iRat V1 
iRat V2 

David Ball, Scott Heath 

Pioneer 

Michael Milford  

Robots in model worlds 
artificial worlds; simulation worlds; fully embodied 

Artificial  world Simulation world 

Mark  
Wakabayashi 

Michael 
Milford 

Real world 

Artificial worlds: fully flexible design 
 
Simulation worlds: as real as  theory allows,  
   typically no noise 
 
Real world robots need to deal with physics using  
   a fully functional sensory-motor system, energy 
   and noise. 





Video by UQ School of Journalism and Communication 
John Harrison, Matti Crocker, Bruce Redman, Carmel Rooney 

iRat: a platform for research in  
neuroscience, robotics and embodied cognition 




Distributed 
intelligence via 
WLAN antenna 

Energy via Battery (2 
hours continuous 
use) 

Local Communication via 
speakers and microphone 

Mobility via 
wheels (over 
1.5m/s) 

Vision via 
webcam 

Local control via 
LCD and navpad Brain via x86 PC 1GHz 

CPU (RoBoard) 

Avoidance via IR 
sensors 

Robot Operating 
System (ROS) 
(Windows or Linux) 

iRat Mass 0.6kg 
Size 170mm long 

Ball, Heath, Milford, Wyeth and Wiles (2010) A Navigating Rat Animat, Alife XII 
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Rat meets iRat 

David Ball,  Scott Heath, in collaboration with Andrea Chiba and Laleh Quinn, UCSD 
ARC Thinking  Systems; Temporal Dynamics of Learning Center 

2 key issues:  
safety and engagement 

Rat 
 

Excellent navigator, flexible, 
curious, will  

chew exposed wires, 
easily frightened,  
can be aggressive 

iRat 
(intelligent rat animat 

technology) 
 

PC on wheels 
 

Size is the key challenge for 
the design of a robot that 

interacts with a rat  
 
 



David Ball,  Scott Heath, in collaboration with Andrea Chiba and Laleh Quinn, UCSD 
ARC Thinking  Systems; Temporal Dynamics of Learning Center 

Rat meets iRat 2 key issues:  
safety and engagement 




iRats as model organisms 
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iRat strengths 
• PC on wheels, flexible 
• wifi for web, cloud, GPUs 
• virtual reality, real world 
• open source 
• Safe around real rats 

 

Platform for  
• systems neuroscience  
• bio-inspired robotics 
• social interaction 
• embodied cognition 
• cognitive architecture grounded in 

space 

Ball, Heath, Milford, Wyeth and Wiles (2010) A Navigating Rat Animat, Alife XII 

monitors it own battery and 
recharges autonomously  Left iRat: laser scanner and 

occupancy grid; 
Right iRat: forward facing 
camera and bio-inspired 
topological map. 

  

iRats with different sensors and  mapping systems in 
conversation 

(Heath et al, ICRA 2013) 



Space 

Space is all around us,  but you can’t  
see it, hear it or touch it. 

 

How do brains represent something that 
doesn’t change when senses change? 



 

Robots 
 

Biology 
Pose Cells / Grid 
Cells 
Encoding of XYθ 
input 

Entorhinal Cortex 
EC2 -> CA3 
EC3 -> CA1 

Experience Map 
DG – tag for new 
experience 
CA3 – recurrent 
connection, old 
experience recall 

Dentate Gyrus 
CA1,CA2,CA3 
Subiculum 

View Cells provide 
the landmarks 

Parietal Cortex 

From robot navigation to hippocampal function 

Major regions in hippocampus 

Aimone Deng Gage TICS 2010  

Interneuron diversity series,  Buzsaki, et al. 



Computational Model of Dentate 
Gyrus with Neurogenesis 

Multi-layer simulation of dentate 
gyrus circuit 

50-1000 neurons per layer 
Biologically-defined  
physiology and connectivity 
Input layers (entorhinal 
cortex) represent spatial and 
contextual information  

Continuous neurogenesis 
Gradual process 
Based on biological 
maturation profile 

Model initialized by “growing” in 
series of four distinct environments 

Last environment with or 
without neurogenesis 

Aimone Wiles Gage Nature Neuroscience 2006; Aimone Wiles Gage Neuron 2009  



Environmental Commitment of Adult-born 
Neurons 

1 

2 

3 

4 

•   Neurons learn to represent 
environment present during 
maturation 
•   Prolonged exposure to environment 
will result in a population of DG 
granule cells that are “specialized” to 
that environment 
 
Hypothesis:  The specialization of 
young neurons to the environments 
present during maturation allows 
improved encoding of new memories 
that relate to previously experienced 
contexts. 
 

Day 200 

Aimone Wiles Gage Nature Neuroscience 2006; Aimone Wiles Gage Neuron 2009  
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oldest                   youngest 
newborn cells  

 



RatSLAM: Micro-experiences create a network of sense 
impressions (views) linked by motor actions (odometry) 
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View View View View View View View View View 

Milford and Wyeth, RatSLAM, 2010; Ball et al 2013 open source RatSLAM 

The pose cell network combines 
position and head direction 

relative to the previous moment 



Closing the loop is the heart of spatial cognition: 
The iRat’s algorithm is RatSLAM (Milford&Wyeth) 

The pose cell network combines position and head 
direction relative to where you were a moment ago 



Open RatSLAM 
Simultaneous localisation and mapping 

 Overhead view of 
environment 

OpenRatSLAM map 
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OpenRatSLAM: An Open Source Brain-Based Robotic SLAM System  

Ball, Heath, Wiles, Wyeth, Corke, Milford (2013), in press. 

The OpenRatSLAM module structure  

Grid-free 



Bio-inspired navigation 

Mapping by David Ball,  Scott Heath and Michael Milford 
OpenRatSLAM: An Open Source Brain-Based Robotic SLAM System  

 




Robots (and different neural regions) can 
model space as occupancy grids or paths 

Heath et al, ICRA 2013 



Time 

Time has an explicit role in dynamical systems. 
 

What is time in neural computation  
(biological and modeled systems)? 



Q. What is the “right” 
abstraction? 

 
A. modelling biology; 

modelling physics; 
modelling chemistry;  

real computation 
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Dynamics occurs at 
multiple scales. 

Does computation? 



Forms of computation 

http://en.wikipedia.org/wiki/File:Maquina.png 

Turing machine  
read/write head and tape  

(Artist’s impression) 

Random access memory 
(RAM) 

A Turing machine can compute 
any computable function 

http://en.wikipedia.org/wiki/File:Maquina.png�


O(N) 

Theoretical computer science distinguishes between 
the computability of a function and its complexity 
(in terms of the resources that it uses).  
 

Main resources used by algorithms are 
time and space. 

 
Spiking network models have more powerful 
resource usage than rate coded neural networks 
(but they are  still not the preferred model for 
engineers and machine learning). 
 



What is computation in 
a neural system and 

how does it differ from 
dynamics? 
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The dominant model in 
computational 

neuroscience is that the 
neuron is the computing 

element of the brain. 

What else performs 
computation? 



Spikes are used in many different coding schemes 

Spiking networks are more frequently studied as complex 
dynamical systems than as computational devices.  

 

(This needs to change for dynamics to be used for computational purposes) 
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50.RN-
50 

GFP 

Complex Spiking Network (CSN) 
Spontaneous entry and exit from seizure [Pete Stratton] 



Resonators: Spike time robotics 

 Spiking neural circuit to direct the 
iRat’s movement towards a temporal 
code of an appropriate frequency 

 
Edge 
Detector 

Resonator 

Janet Wiles, David Ball, Scott Heath, Chris Nolan and Peter Stratton (2010) Spike-Time Robotics: A Rapid Response Circuit for a Robot that Seeks 
Temporally Varying Stimuli, 17th International Conference on Neural Information Processing (ICONIP) 



A race with a 
computational function 

Nolan Wyeth Milford & Wiles Hippocampus 2010 

Novel pattern 
(before learning) 

Familiar pattern 
(after learning) 

EC2 

CA3 

DG 

EC2 

CA3 

DG 

Fast spike response times in 
CA3 signal familiarity 



Message of the Race model: 
a pattern signals its own novelty  by its microtiming 

 How does the race influence the circuit dynamics? 
• If signals into CA3 arrive faster on the direct route 

from EC2 than from DG, it can indicate a familiar 
memory.  

• Otherwise it can indicate a new memory and 
create a new CA3 attractor. 

 

 Memory can also be intentionally 
directed to recall or learning by 
synaptic modulation of CA3. 



An algorithm for sequence learning  
based on spike transmission delays 

 
In neural systems, timing is critical  

at the millisecond level. 
 
Real neural systems:  
• learn temporal order in perceptual input, motor control, 

coordination and memory tasks 
• become faster with increased experience 
• can change if the stimuli changes 
• don’t need explicit reward to learn  
• can learn sequences in one or a few trials 
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Spike delay variance learning (SDVL) 
An algorithm for sequence learning  

• where: 
– p is the peak postsynaptic current 
– t0 is the time since a presynaptic spike in ms (t0 ≥ 0) 
– μ is the mean  
– v is the variance  

 
• The ‘weight’ of a synapse is the integral of the curve, so 

p is varied to match a given integral 
• Hence each synapse has 3 parameters (μ, v and 

integral) 

Wright and Wiles, IJCNN (2012) 30 

Gaussian Synapse Model 



Post synaptic release 
profile adapting delay 
mean µ, and variance v 

 
 

Low variance (v < 0.1): 
current is delivered 
as a single burst at 
delay µ  

High variances (v >5): 
current is slowly 
released, peaking at 
delay µ 

0

0.1

0.2

0.3

0.4

0.5

-5 0 5 10 15 20 25

PDF 
(50 generations)

Single synapse 
adapting both µ and v 
(1+1 EA, 50 updates) 

Initial 
µ = 5; v =1 

Target 
µ = 25 

Wright and Wiles (2012) 31 
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Spike Delay-Variance Learning (SDVL)  Algorithm 

The change of mean, Δμ, is determined by: 

where:  
t0 is the time difference between the presynaptic and postsynaptic spike (ms) 
μ is the mean of the synapse in milliseconds [min 0, max 15] 
v is the variance of the synapse [min 0.1, max 10] 
k(v) is the learning accelerator, here k = (v + 0.9)2 

ημ is the mean learning rate 
α1, α2 are constants 
 
The change of variance, Δv, is determined by: 
 
 

where: 
ηv is the variance learning rate 
β1, β2 are constants 

Wright and Wiles (2012) 32 



A Task phases 

B Spike arrival   
    times 

C Synapse  
    traces 

D Variance  
    traces 

E Gaussian  
    postsynaptic  
    release  
    profiles 

Wright and Wiles (2012) 33 

Sequence recognition task results 



Winner Takes All Spiking Network 
 with spike delay variance learning (SDVL)  

Implementation notes 
 Learning multiple sequences 

works best when: 
• neurons return to baseline 

before each presentation  
(period < 5-10Hz) 

• the integral of all the synapses 
is a constant 

• the same number of input 
neurons fire within 15ms at 
each presentation (at least 3-5) 

34 Wright and Wiles (2012) 

2-layer spiking network   
gaussian synapses + SDVL 
winner-take-all output layer  



Onset-offset responses from 
differences between video frames 

Moving forwards Turning right 
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Moving forwards 



Dynamic Vision Sensor (DVS128) 
asynchronous temporal contrast 
silicon retina  www.inilabs.com 

• No video frames: address-
event representation 
(AER) only transmits local 
pixel-level changes  

• Output is a stream of 
events at microsecond 
time resolution 

• Power, data storage and 
computational 
requirements are 
drastically reduced, and 
dynamic sensor range is 
increased by orders of 
magnitude. 

x .03 




Summary: Neural codes for time and space 

 Micro-timing enables a 
pattern to signal its own 
novelty 
 

 

 Maturation processes can 
enhance capacity for 
specific environments 
 
 
 
 
 
 

 Dendritic computation 
enables direct learning of 
delays in sequences 
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Neural computing is not 
just about information 

carried by spikes.  
 

An embodied organism is a 
multi-scale dynamical 

system that gives rise to 
and interprets spikes. 

 
Every level in a biological 
system has rich dynamics 
and signals about those 

dynamics. 



Future directions in Bio-inspired computation 
Rethinking the role of time in processing 

38 

Clock-free: spiking neuron as an 
asynchronous micro-pipeline 
 

Grid-free: topological graphs with 
local metric structure and global 
regularization 
 

Scale-free and symbol-free: multi-
scale recurrent networks 
 

iRat: Neurorobotic platform to 
address all 4 challenges 



Collaborators 
 
 

UQ: Scott Heath, Peter Stratton, Chris Nolan, Allen Cheung,  
Amy Gibson; James Henderson; UQ School of Journalism; 

 
QUT: David Ball, Michael Milford, Gordon Wyeth 

UCSD: Andrea Chiba, Laleh Quinn, Doug Nitz, Andy Alexander, 
Salk: James (Brad) Aimone and Fred (Rusty) Gage 

 
 

Funding: ARC, TDLC, KIBM, JSMF, AOARD 
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