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Electroencephalography (EEG)
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Localization of brain regions ~ 2
participating in a certain
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EEG

e A mixture signal
acquired through 2" level analysis
scalp mounted Functional integration of the
electrodes brain areas (a.k.a effective

e Measures brain’s connectivity or information flow

electrical activity at
the synapses
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Event Related Potential (ERP) Technique

| Raw EEG WWWMWWWWWWM

Pre-processing of the raw
data
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Re-reference

High-pass/Low-pass filter

data
Reject continuous data

Epoch data w.r.t. stimulus

(eg:-1000ms to 2000ms)
Reject artifactual epochs
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Visual categorisation task data set for animal/distractor

pictures - Delorme et al., 2002
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ERPs

ERPs are the,
Electrical potentials associated with specific sensory, motor
perceptual, or cognitive events

From EEG to ERP...

— Time-locked average of EEG from many trials involving same
‘event’. This results in increasing the signal/noise ratio.

Stimulus presented | _ Flectrode site Oz | | Condition 1 :
Time locked to this Animal Picture
‘event’ time = ‘0’ ‘

Animal Picture
Distractor Picture

Condition 2 :
Distractor Picture

During early visual ‘ ‘ ‘ ‘ ‘ ‘
. 100 200 300 400 500 600 700
processing both Time (ms)

waveforms overlap Visual categorisation task data set for animal/distractor
— pictures - Delorme et al., 2002
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Effective Connectivity

 Functional Connectivity is the correlation between

two brain regions. No information on the causal
Interaction.

o Effective Connectivity is the directional influence
one brain region can have on the other.

* Popular analysis tools are;
1. Dynamic Causal Modeling (DCM)
e Use physiologically inspired models
2. Granger causality Modeling (GCM)
* Data driven method
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Dynamic Causal Modeling (DCM)

DCM framework consists of a general model that
described the neuronal coupling of brain regions.

— A single brain region is represented by neural mass
models

— deterministic state-space model stated in terms of
ordinary differential equations.

— Variational Bayesian approach to estimate the
parameters of the model

Advantage :both extrinsic and intrinsic anatomic
connections, those between and within cortical
regions, can be parameterized explicitly.

Drawback: apriori knowledge on the network structure
required
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Source model in DCM

Source: cortical mini-column organisation based neural mass models
A column representation of the source is modelled by three neuronal subpopulations,
1.  Excitatory pyramidal cells : receives inhibitory feedback from the local interneuron and excitatory
input from the spiny stellate cells
2.  Spiny stellate cells: receives extrinsic inputs and excitatory inputs from pyramidal cells

3. Inhibitory interneuron
Each of the neuron populations is modeled at two stages.
inhibitory U; Uy
interneurons . V >
A
C, C, 15t stage 2"d stage
u spiny Transforms the average pulse density Transforms the average membrane
P Gtellate cells of presynaptic input u; into an average potential of a neural population into
Extrinsic Inputs postsynaptic membrane potential (v) an average ring rate through a
Cl Czl which can be either excitatory or nonlinear transformation described
i Ys v inhibitory.  This is a linear by a sigmoid function
pyramidal transformation with an impulse
Column outputs cells :
response given by, h 2¢
V=hou Up = S(v) = —2——¢g,
C,_4 : Intrinsic connectivity constants H ( y ) 1+e
e,i T, _
Jansen & Rit, Biol. Cybern., 1995 h = te o David et al., 2005
P Te Y
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Source model in DCM contd.

h® u,

X; = x8
t « H, 2Xg X,
H,, Y ) = eSO =T
h _ e,l te Te,i e .
= —T ‘
el inhibitory C4 C3
interneurons
A X X
spiny I X, = A, (€, S(X%o)+ U)— —X_;
stellate cells u Te e e
A
State space model T l C, C,
v \ 4
V=X pyramidal X, = Xg — Xg
cells
. He i Zx v XZ = X5
X=—U——"— _H 2% X
2 — e _ 5 M2
Tei T T €— 7, (G
H - determines the maximum amplitude Ys = %o X =X
| of the post synaptic potential =ic48(x7 Xg

- Determines delay of the synaptic transmission
- denotes excitatory and inhibitory respectively
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Connectivity Rules used in DCM

Spiny -
stellate cells RIDY
IES— stellate cells
c |
Pyramidal p—"—" L — ) Pyramidal
- T “C—— : _: ------------ B Cells
| O
C, ICg
Interneuron e | Interneuron
ERlls, | 2= W RSN q cells
Region 1 Region 2

Bottom-up (forward)
_____ - Top-down (backward)
.................. Lateral

Felleman & Van Essen, Cereb. Cortex, 1991
David et al., Neurolmage, 2003
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DCM :Estimation of model parameters

The generative forward model can be represented as;

%(0)= (x,u,8)

y=L(6.)X%, = 9(x,0)

PyeT—

L(6, ) Spatial odel

p(@1y) e p(y[60)p(6)  |Priors on:

e Extrinsic/intrinsic
Likelihood: A connectivity parameters
eSource model p(y | (9) p(6’) eParameters of source
eSpatial forward model dynamics (He,;, Te i)

eConduction delays
e|nput parameters

The differences in ERPs can be explained by the
modulation to connectivity in the DCM

Kiebel et al., 2008
10 [ oewan
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Granger Causality Modeling (GCM)

Based on the Grangers principle that knowledge of the drivers time series at a time should improve
the prediction of the receivers time series at a later time (Granger, 1969)

GC-based effective connectivity analysis is formulated through Multivariate Autoregressive (MVAR)
modeling of time-series data. For k time-series the MVAR model can be given as,

P
Y(n) = z A (DY(n— i)+ Em)
=1

Where,

11

n=1,2,..,L denotes a time point

P is the model order

Y(n) = [y;(n),. .., vi(m)]" y;j denotes the j* signal source
a1 (1) - ag(i)
Ar(i) = : . :

] is the model coefficient matrix at lag i
ag1 (D) - agr(d)

E(n) = [e;(n),...,e,(n)]" is a zero mean white noise input with covariance Y ¢

Sationarity and Stability are assumed when using MVAR models.

Due to EEG data being Non-stationary adaptive estimation of autoregressive parameters
is required.
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Frequency domain MVAR measures

Frequency Domain Representation of the MVAR model,
Y(f) =A"HNHEW)

Y(f) = H(f)E(S)
Where, _ . _

_i is the inverse transfer matrix.
A = [1= ) ek 4, (k)
Lk=1 j

r ]
Fourier transform of the MVAR coefficients

Based on MVAR model there are many time-domain and frequency domain measures
developed for effective connectivity estimation such as,

Partial Directed Coherence (PDC)

B Aii(f) .
PDC;;(f) = Baccala & Sameshima, 2001
jzifnﬂ A (P2
Directed Transfer Function(DTF
(DTF) |H;;(f)]

DTF;;(f) = Kaminski & Blinowska, 1991

k 2
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Time-varying MVAR estimation

Short time window-based (STW) approach

The entire signal is divided into short overlapping time intervals using a
Hamming window.

|" DEAKIN
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Time

For a smgle time window,

2 A.(DY(n—0) + E(n)
=1

For n=1,...,n, windows the
estimation will result in n,
number of, {4,(i)};=; p model
coefficient matrices.

Connectivity measures are
calculated for each window which
naturally results in a time varying
connectivity estimation a.k.a.
Information flow

Results are interpreted through
time-frequency plots showing the
information flow for each
channel/source combinations
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Time-varying MVAR estimation contd.

2. Adaptive Kalman Filtering

The MVAR model is represented by a state space formulation. MVAR matrix
parameters are re-arranged into a state vector of the dynamical system.
Subsequently a linear Adaptive Kalman filter is utilised to estimate the parameter
vector.

an) =a(n—1)+V(n)

Y(n) = C(n)a(n) + E(n)

Where,
* v(n) is the state noise, a multivariate Gaussian with zero mean and covariance ),,,.

vec[AL (1,n)]"

e a(n) = : is the concatenation of vectorised {A,-(i,n)}i-4
vec[A7 (P,m)]"
YT (n—1)
e C(n)=I1,Q : is the concatenated matrix of past measurements, @ is the
Y'(n—P)]

kronecker-product and I, is the (k X k) identity matrix.

14 ([ peakin
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Extended MVAR (eMVAR) Modeling

MVAR modeling consider only time-lagged effect in regression

In the presence of instantaneous communication or zero lag effects between
sources the conventional MVAR will not capture them.

These correlations will be accounted in a non-diagonal covariance matrix of the
Y. MVAR fitting residuals

With a correlated noise structure in the MVAR residuals the frequency domain
connectivity measures will be inaccurate giving spurious connections.

So we use an eMVAR,

P
Y(n) = z B.(i,n)Y(n — i) + W(n)
=0

Erlaa et al., 2009

Where, Faes et al., 2010

15

B.(i,n) is the model coefficient matrix at lag i at time point n.
W(n) = [w(n),...,wi(n)]" is a zero mean white noise input with covariance ..

However the estimation is non trivial due to the B, (0) matrix, with instantaneous
connections.
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Relationship between MVAR and eMVAR

The eMVAR model can be rearrapnged as,

Y(n) = B,(0,n)Y(n) + Z B.(i,n)Y(n — i) + W(n)
=1

P
Y(n) = [I - B,(0,n)] z B.(i,n)Y(n — i) + [I — B.(0, )] "W (n)
=1

If, L =[I — B,(0,n)]~ ! then,
A.(i,n) = LB, (i,n)
g=LYwlL

If B,.(i,n) = 0 i.e. noinstantaneous connections present inthedata L = I

elVIVARImedelicanibeliegandediastalgenernalisedimodeliior
CallisalityZbased analysis
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Connectivity measures-based on eMVAR

Frequency domain representation of the eMVAR model,

P
B.(f) = B,(0) + Z B,.(m)exp (—2mimf)  Erlaaetal, 2009
Faes et al., 2010

m=1

B(f)=1[I — B.(f)]
Extended PDC (ePDC),

1 Instantaneous
Bz;(fﬁ
PO = B (F !
m=1 o2 mj
Lagged causality

Instantaneous PDC (iPDC),

B(f) = |I- Z BT(m)erp(—Q?r-fmfj]

m=1
iPDC.(f) — 5 Bij(f) Lagged causality
o S ret o [ B ()2 only

—
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STW- based eMVAR identification

1. Fitthe MVAR model to data and calculate the coefficient matrices
A, and ).p .

2. Since ),,, is a diagonal matrix, apply a Cholesky decomposition to
Y.r toobtain L, using ), = L), L.

3. Estimate B, (0,t) and B, (i,t) using,

= [I - B,(0,t)]""
A, (i,t) = LB,(i,t)

4. Due to the Cholesky decomposition B, (0,t) is a lower diagonal
matrix with null diagonal. i.e. Instantaneous connections are
constrained fromi to j for i<j only

bﬂ[lﬂ@vﬂ&mca@@i?@h@@w@m
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Kalman filtering for eMVAR identification

Temporal ordering can be determined using,
e qapriori knowledge of the measured time-series
* non-gaussianity of the MVAR model residuals (Hyvdérinen et al., 2008)

The state space formulation for the eMVAR model can be given as,
x(n) =x(n—1)+v(n)
Y(n) =Gn)x(n) + W(n)
Constrained by, Dx(n) = d

Where,
* ¥(n) is the state noise, a multivariate Gaussian with zero mean and covariance 3.

vec[BF (0,n)]"

e x(n) = : is the concatenation of vectorised {B, (i,n)}/_,
vec[BF (P,n)]"
- YT () ]
s G(N)=IQ® : is the concatenated matrix of past measurements, & is the
Y'(n—P)]

kronecker-product and /j is the (k X k) identity matrix.
¥ / oeain
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Constrained Adaptive Kalman Filtering

Hettiarachchi, Imali T., Mohamed, Shady, Nyhof, Luke and Nahavandi, Saeid, "An extended multivariate autoregressive
framework for EEG-based information flow analysis of a brain network", In Proceedings of the 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), pp. 3945-3948, 2013.

o Time Update apriori state estimate
Z(njn—1) = z(n—1n—1) Estimation error covariance
Pinjn—1) = P(n—1ln 1)+ Zv(n) Measurement residual

Yin) = Y(n)-Clnlzinln —1)

e Measurement Update

I Ye(n) = aXp(n—-1)+(1-a)YYT I

: e TaY &
S(n) = C(n)P(njn—1)C(n) Residual covariance matrix
—|—EE(T1._) -
K(n) = P(njn—1)C(n)TS(n)™! Kalman gain
#nln) = #(nln—1)+ K(n)Y(n) Unconstrained filter est.
F(nl = #(nl DT
Hnin) (DF}LH | D,?'n)l Constrained filter est.
n II
.Dz(n|n)
P(njn) = [I—K(n)C(n)]P(n|n—1) aposteriori est. Error cov.

o I Yv(in) = I(1-—a)trace(P(n|n))/P I
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Simulations with

zero lag connectivity

MVAR/PDC
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Short time windowing

Constrained Adaptive Kalman Filter
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Information flow analysis using real data

For the demonstration purposes a visual categorisation task data set for animal/distractor
pictures is used(Delorme et al., 2002). A single subject results for the ‘animal’ stimulus is
presented here.

We use a two step approach in the source connectivity analysis.

STEP 1: Source Reconstruction and extraction of source signals
STEP 2: Connectivity analysis using MVAR/eMVAR modeling of the source time-series

componant 1 icomponent 2 component 3 cemponent 4 compenent 5 component &

S &

ICA algorithm decomposes the preprocessed multi-

9 . trial recordings to determine spatially fixed and
pomponen(7) - component 8 scmponet 11 ECTPWN 1o temporally independent sources, contributing

. ‘ @ towards the VEP.

component 13 component 14 component 15 componert 16 compoanent 17 component * ™ e ——

e O O

component 21 component 22 component 23 companent

@ ‘ Ic 2L|:§l5:| '__..ﬁ'

carmponent 29 component

rs‘l#"

- 1' :P.H
- | & . =
i 3 1 - . . H
componen 31 - Localised dipole sources with
§ <5% residual variance.
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Information flow analysis using real data

Frequenu:‘y'

23

The temporal order in which the component dipoles are activated was determined as IC 12, IC

10,1C7,I1C3,IC 2R, IC4 and IC 2L and these dipole sources are referred S1, S2, .
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MVAR-based PDC in the time-frequency
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eMVAR-based LPDC in the time-frequency
representation

Significantly different information flow patterns observed.

Only a few connectivities seen in PDC appear in LPDC . For instance S1 - S6 is no longer
seen in LPDC, while the connectivity S1 - S4 is estimated very high in and LPDC, which is
reasonable due to IC 2R and IC 12 are located spatially very close to each other .

Preliminary results presented, which requires further validation
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Conclusion

Dynamic causal modeling and Granger causality modeling are two tools that
can be used for the information flow analysis using ERP data.

DCM contains physiologically meaningful parameters however requires apriori
knowledge on the underlying connectivity structure for the estimations to be
accurate.

GCM uses a simple MVAR model parameterised only by its model order. Used
in many ERP studies during the past years and found wide acceptance.

We use the eMVAR model as a generalised model for Granger causality-based
connectivity analysis.

We have proposed a novel constrained adaptive Kalman filter framework for
the eMVAR identification which performs better than the existing STW-
approach.
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Question Time

Imali T. Hettiarachchi
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Phone: +61 3 5227 3431
Email: i.hettiarachchi@research.deakin.edu.au
Web: http://www.deakin.edu.au/cisr
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