

Source level Information flow Analysis using Event Related Potential (ERP) data

Presented by

Imali T. Hettiarachchi

Team members :Prof. Saeid Nahavandi Dr. Shady Mohamed Mr. Luke Nyhof

Centre for Intelligent Systems Research

Deakin University

CISR

Electroencephalography (EEG)

 1st level analysis
 Localization of brain regions participating in a certain cognitive process
 (Regions of interest/activations)

EEG

- A mixture signal acquired through scalp mounted electrodes
- Measures brain's electrical activity at the synapses

DEAKIN

Worldlu

2nd level analysis

Functional integration of the brain areas (a.k.a effective connectivity or information flow)

Event Related Potential (ERP) Technique

ERPs

ERPs are the,

Electrical potentials associated with specific sensory, motor perceptual, or cognitive events

From EEG to ERP...

 Time-locked average of EEG from many trials involving same 'event'. This results in increasing the signal/noise ratio.

Effective Connectivity

- Functional Connectivity is the correlation between two brain regions. No information on the causal interaction.
- Effective Connectivity is the directional influence one brain region can have on the other.
- Popular analysis tools are;
 - 1. Dynamic Causal Modeling (DCM)
 - Use physiologically inspired models
 - 2. Granger causality Modeling (GCM)
 - Data driven method

DEAKIN

Dynamic Causal Modeling (DCM)

- DCM framework consists of a general model that described the neuronal coupling of brain regions.
- A single brain region is represented by neural mass models
- deterministic state-space model stated in terms of ordinary differential equations.
- Variational Bayesian approach to estimate the parameters of the model

Advantage :both extrinsic and intrinsic anatomic connections, those between and within cortical regions, can be parameterized explicitly.

Drawback: *apriori* knowledge on the network structure required

DEAKIN

Source model in DCM

Source: cortical mini-column organisation based neural mass models

A column representation of the source is modelled by three neuronal subpopulations,

- 1. Excitatory pyramidal cells : receives inhibitory feedback from the local interneuron and excitatory input from the spiny stellate cells
- 2. Spiny stellate cells: receives extrinsic inputs and excitatory inputs from pyramidal cells
- 3. Inhibitory interneuron

 c_{1-4} : Intrinsic connectivity constants Jansen & Rit, Biol. Cybern., 1995

DEAKIN

Worldlu

Each of the neuron populations is modeled at two stages.

UniSA Symposium– Friday 12th July 2013

Source model in DCM contd.

Connectivity Rules used in DCM

Felleman & Van Essen, Cereb. Cortex, 1991 David et al., NeuroImage, 2003

DEAKIN

DCM :Estimation of model parameters

The generative forward model can be represented as;

The differences in ERPs can be explained by the modulation to connectivity in the DCM

Kiebel et al., 2008

DEAKIN

Granger Causality Modeling (GCM)

- Based on the Grangers principle that knowledge of the drivers time series at a time should improve the prediction of the receivers time series at a later time (*Granger, 1969*)
- GC-based effective connectivity analysis is formulated through Multivariate Autoregressive (MVAR) modeling of time-series data. For k time-series the MVAR model can be given as,

$$Y(n) = \sum_{i=1}^{P} A_r(i)Y(n-i) + E(n)$$

Where,

- n = 1, 2, ..., L denotes a time point
- *P* is the model order

DEAKIN

•
$$Y(n) = [y_1(n), \dots, y_k(n)]^T y_j$$
 denotes the *j*th signal source
$$\begin{bmatrix} a_{11}(i) & \cdots & a_{1k}(i) \end{bmatrix}$$

- $A_r(i) = \begin{bmatrix} \vdots & \ddots & \vdots \\ a_{k1}(i) & \cdots & a_{kk}(i) \end{bmatrix}$ is the model coefficient matrix at lag *i*
- $E(n) = [e_1(n), ..., e_k(n)]^T$ is a zero mean white noise input with covariance \sum_E
- Sationarity and Stability are assumed when using MVAR models.
- Due to EEG data being Non-stationary adaptive estimation of autoregressive parameters is required.

Frequency domain MVAR measures

Frequency Domain Representation of the MVAR model,

$$Y(f) = A^{-1}(f)E(f)$$

$$Y(f) = H(f)E(f)$$
Where,
$$A(f) = \left[I - \sum_{k=1}^{P} e^{-i2\pi fk} A_r(k)\right]$$
is the inverse transfer matrix.
Fourier transform of the MVAR coefficients

Based on MVAR model there are many time-domain and frequency domain measures developed for effective connectivity estimation such as,

Partial Directed Coherence (PDC) $PDC_{ij}(f) = \frac{A_{ij}(f)}{\sqrt{\sum_{m=1}^{k} |A_{mj}(f)|^2}} Baccala \& Sameshima, 2001$ Directed Transfer Function(DTF) $DTF_{ij}(f) = \frac{|H_{ij}(f)|}{\sqrt{\sum_{m=1}^{k} |H_{im}(f)|^2}} Kaminski \& Blinowska, 1991$ 12 DEAKIN UniSA Symposium– Friday 12th July 2013

Time-varying MVAR estimation

1. Short time window-based (STW) approach

The entire signal is divided into short overlapping time intervals using a Hamming window.

- For $n = 1, ..., n_w$ windows the estimation will result in n_w number of, $\{A_r(i)\}_{i=1...P}$ model coefficient matrices.
- Connectivity measures are calculated for each window which naturally results in a time varying connectivity estimation a.k.a. Information flow
- Results are interpreted through time-frequency plots showing the information flow for each channel/source combinations

DEAKIN

Time-varying MVAR estimation contd.

2. Adaptive Kalman Filtering

The MVAR model is represented by a state space formulation. MVAR matrix parameters are re-arranged into a state vector of the dynamical system. Subsequently a linear Adaptive Kalman filter is utilised to estimate the parameter vector.

a(n) = a(n-1) + V(n)

Y(n) = C(n)a(n) + E(n)

Where,

- v(n) is the state noise, a multivariate Gaussian with zero mean and covariance \sum_{v} .
- $a(n) = \begin{pmatrix} vec[A_r^T(1,n)]^T \\ \vdots \\ vec[A_r^T(P,n)]^T \end{pmatrix}$ is the concatenation of vectorised $\{A_r(i,n)\}_{i=1}^P$ • $C(n) = I_k \otimes \begin{bmatrix} Y^T(n-1) \\ \vdots \\ Y^T(n-P) \end{bmatrix}$ is the concatenated matrix of past measurements, \otimes is the

kronecker-product and I_k is the $(k \times k)$ identity matrix.

DEAKIN

Extended MVAR (eMVAR) Modeling

- MVAR modeling consider only time-lagged effect in regression
- In the presence of instantaneous communication or zero lag effects between sources the conventional MVAR will not capture them.
- These correlations will be accounted in a non-diagonal covariance matrix of the \sum_{E} MVAR fitting residuals
- With a correlated noise structure in the MVAR residuals the frequency domain connectivity measures will be inaccurate giving spurious connections.
- So we use an eMVAR,

$$Y(n) = \sum_{i=0}^{P} B_r(i, n) Y(n - i) + W(n)$$

Where,

Erlaa et al., 2009 Faes et al., 2010

- $B_r(i, n)$ is the model coefficient matrix at lag *i* at time point *n*.
- $W(n) = [w(n), ..., w_k(n)]^T$ is a zero mean white noise input with covariance \sum_w .
- However the estimation is non trivial due to the B_r (0) matrix, with instantaneous connections.

DEAKIN

Relationship between MVAR and eMVAR

The eMVAR model can be rearranged as,

$$Y(n) = B_r(0,n)Y(n) + \sum_{i=1}^{r} B_r(i,n)Y(n-i) + W(n)$$
$$Y(n) = [I - B_r(0,n)]^{-1} \sum_{i=1}^{P} B_r(i,n)Y(n-i) + [I - B_r(0,t)]^{-1}W(n)$$

If, $L = [I - B_r(0, n)]^{-1}$ then, $A_r(i, n) = LB_r(i, n)$ $\sum_E = L \sum_W L$

If $B_r(i, n) = 0$ i.e. no instantaneous connections present in the data L = I

eMVAR model can be regarded as a generalised model for Granger Causality-based connectivity analysis

DEAKIN

Connectivity measures-based on eMVAR

Frequency domain representation of the eMVAR model,

 $B_r(f) = B_r(0) + \sum B_r(m) exp\left(-2\pi i m f\right)$ $B(f) = [I - B_r(f)]$

Extended PDC (ePDC),

Instantaneous

Erlaa et al., 2009

Faes et al., 2010

$$ePDC_{j\to i}(f) = \frac{\frac{1}{\sigma_i} B_{ij}(f)}{\sum_{m=1}^k \frac{1}{\sigma_m^2} |B_{mj}(f)|^2}$$

+

Lagged causality

Instantaneous PDC (iPDC),

$$\bar{B}(f) = \begin{bmatrix} I - \sum_{m=1}^{P} B_r(m) exp(-2\pi i m f) \end{bmatrix}$$
$$iPDC_{j \to i}(f) = \frac{\frac{1}{\sigma_i} \bar{B_{ij}}(f)}{\sum_{m=1}^{k} \frac{1}{\sigma_m^2} |\bar{B_{mj}}(f)|^2} \quad \begin{array}{c} \text{Lagged causality} \\ \text{only} \end{bmatrix}$$

UniSA Symposium– Friday 12th July 2013

DEAKIN

STW- based eMVAR identification

- 1. Fit the MVAR model to data and calculate the coefficient matrices A_r and \sum_E .
- 2. Since \sum_{w} is a diagonal matrix, apply a Cholesky decomposition to \sum_{E} to obtain *L*, using $\sum_{E} = L \sum_{w} L$.
- 3. Estimate B_r (0,t) and B_r (i,t) using,

 $L = [I - B_r(0, t)]^{-1}$ $A_r(i, t) = LB_r(i, t)$

4. Due to the Cholesky decomposition B_r (0,t) is a lower diagonal matrix with null diagonal. i.e. Instantaneous connections are constrained from i to j for i<j only</p>

Identiability issues of the eMVAR model can be overcome through a constrained instantaneous transfer path specification via temporal ordering of the multivariate time-series.

Kalman filtering for eMVAR identification

Temporal ordering can be determined using,

- *apriori* knowledge of the measured time-series
- non-gaussianity of the MVAR model residuals (Hyvärinen et al., 2008)

The state space formulation for the eMVAR model can be given as,

 $x(n) = x(n-1) + \bar{v}(n)$

Y(n) = G(n)x(n) + W(n)

Constrained by, Dx(n) = d

Where,

• $\bar{v}(n)$ is the state noise, a multivariate Gaussian with zero mean and covariance $\sum_{\bar{v}}$. • $x(n) = \begin{pmatrix} vec[B_r^T(0,n)]^T \\ \vdots \\ vec[B_r^T(P,n)]^T \end{pmatrix}$ is the concatenation of vectorised $\{B_r(i,n)\}_{i=0}^p$ • $G(n) = I_k \otimes \begin{bmatrix} Y^T(n) \\ \vdots \\ Y^T(n-P) \end{bmatrix}$ is the concatenated matrix of past measurements, \otimes is the kronecker-product and I_k is the $(k \times k)$ identity matrix.

SCISR

19

DEAKIN

Constrained Adaptive Kalman Filtering

Hettiarachchi, Imali T., Mohamed, Shady, Nyhof, Luke and Nahavandi, Saeid, "An extended multivariate autoregressive framework for EEG-based information flow analysis of a brain network", In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), pp. 3945-3948, 2013.

• Time Update

$$\hat{x}(n|n-1) = \tilde{x}(n-1|n-1)
P(n|n-1) = P(n-1|n-1) + \Sigma_V(n)
\tilde{Y}(n) = Y(n) - C(n)\hat{x}(n|n-1)$$

apriori state estimate

Estimation error covariance Measurement residual

· Measurement Update

$$\begin{split} \Sigma_E(n) &= \alpha \Sigma_E(n-1) + (1-\alpha) \tilde{Y} \tilde{Y}^T \\ S(n) &= C(n) P(n|n-1) C(n)^T \\ &+ \Sigma_E(n) \\ K(n) &= P(n|n-1) C(n)^T S(n)^{-1} \\ \hat{x}(n|n) &= \hat{x}(n|n-1) + K(n) \tilde{Y}(n) \\ \tilde{x}(n|n) &= \hat{x}(n|n) - P(n|n) D^T \\ &\quad (DP(n|n) D^T)^{-1} \\ &\quad .D \hat{x}(n|n) \\ P(n|n) &= [I - K(n) C(n)] P(n|n-1) \\ \Sigma_V(n) &= I(1-\alpha) trace(P(n|n))/P \end{split}$$

UniSA Symposium– Friday 12th July 2013

Residual covariance matrix

Kalman gain Unconstrained filter est.

Constrained filter est.

aposteriori est. Error cov.

DEAKIN

Simulations with zero lag connectivity

Information flow analysis using real data

For the demonstration purposes a visual categorisation task data set for animal/distractor pictures is used(*Delorme et al., 2002*). A single subject results for the 'animal' stimulus is presented here.

We use a two step approach in the source connectivity analysis.

STEP 1: Source Reconstruction and extraction of source signals

STEP 2: Connectivity analysis using MVAR/eMVAR modeling of the source time-series

Information flow analysis using real data

• The temporal order in which the component dipoles are activated was determined as IC 12, IC 10, IC 7, IC 3, IC 2R, IC 4 and IC 2L and these dipole sources are referred *S*1, *S*2, . . . , *S*6.

- Significantly different information flow patterns observed.
- Only a few connectivities seen in PDC appear in LPDC . For instance $S1 \rightarrow S6$ is no longer seen in LPDC, while the connectivity $S1 \rightarrow S4$ is estimated very high in and LPDC, which is reasonable due to IC 2R and IC 12 are located spatially very close to each other .
- Preliminary results presented, which requires further validation

DEAKIN

Conclusion

- Dynamic causal modeling and Granger causality modeling are two tools that can be used for the information flow analysis using ERP data.
- DCM contains physiologically meaningful parameters however requires *apriori* knowledge on the underlying connectivity structure for the estimations to be accurate.
- GCM uses a simple MVAR model parameterised only by its model order. Used in many ERP studies during the past years and found wide acceptance.
- We use the eMVAR model as a generalised model for Granger causality-based connectivity analysis.
- We have proposed a novel constrained adaptive Kalman filter framework for the eMVAR identification which performs better than the existing STW-approach.

Question Time

Imali T. Hettiarachchi

Centre for Intelligent Systems Research Deakin University, Geelong Waurn Ponds Campus Waurn Ponds, Victoria, Australia 3216

Phone: +61 3 5227 3431 Email: <u>i.hettiarachchi@research.deakin.edu.au</u> Web: <u>http://www.deakin.edu.au/cisr</u>

DEAKIN