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e Brief introduction to Extreme Learning Machines (ELM)
 Motivation for Deep Extreme Learning Machines (Deep ELM)
 Deep ELM Architecture

* Improving accuracy using Weight Shaping Methods

* Experiments

* Discussion and conclusion




Extreme Learning Machines
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General Approach

1. Using random and fixed
weights, connect an input
layer to a hidden layer of
sigmoidal neurons

2. Using training data,
numerically solve for the
output weights between the
hidden and the output layers
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Extreme Learning Machines
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Training an Extreme Learning Machine

Input to the hidden layer,

Hy =Wpil
1

flH)i = 7 exp(—(H1):)

For k training data, we then form a
matrix using the hidden layer
activations,

AERMXk

We then take the Moore-Penrose
Pseudoinverse of A,

A+ c kaM

Now we can calculate the output
weight matrix,

Woi = JAT

Where J represents the desired target output.
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Motivation for Deep ELM
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* Drawbacks of classical single layer ELM
— Large hidden layer size
— Batch training (Restricts the use of it for real-time learning applications)

— Combined batch training and a large hidden layer is computationally
expensive, even for an extreme learning machine

— Is it feasible for hardware implementations?
e Batch training have been addressed in on-line training algorithms
 How can we reduce the hidden layer size, and keep the same performance?

— Can we have multiple hidden layers of smaller size?

*  Which would reduce the computational resources required, and significantly reduce the
training time
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Randomly weighted

Significantly smaller hidden layer
sizes than classical ELM approach

all-to-all
connections
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So how do we
achieve this?
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* We start by constructing a

Wp, 0 Wo single layer ELM
\\‘ \ Hy =Wp1
. 1
7 \ ," @ 7 flH )i = 1 + exp(—(H1);)
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o Output Vector
‘ (L dimensional)
Input Vector @ * Here, Jis the target vectors.

(N dimensional)

Hidden Layer of In most ELMs, this will be a K

non-linear neurons dimensional vector, where K
is equal to the number of
classes in the training
dataset.

(M dimensional)




Deep ELM Architecture
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* Instead of performing
Wou classification at the output

Wpy
0 layer, we train the output
w o ° weight matrix such that the
target outputs are auto-
\,"G 0 encoded versions of the

inputs

/\ a mewat

flHA): = 1+ exp(—(H1);)
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@ * Compute the

pseudoinverse of

Wpy 0 Woi o the second hidden

layer, which we

NSO =
oo \oONZG
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Deep ELM Architecture
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Adding supervision to the network ..=..
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If we do this purely using the training images (without labels), the advantages become
unclear. So what can we do?

Supervised Auto-Encoding

We add training labels combined with training images to create a single training dataset.

Image
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Weight Shaping Methods
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* Instandard ELM approach, the input weights are initialised
randomly. For example between -0.5 and +0.5

* Methods
— Computed Input Weights for ELM (CIW-ELM)!
— Receptive Fields (RF-ELM)?
— Combined CIW and RF ELM

[1]. J. Tapson, P. de Chazal, and A. van Schaik, “Explicit computation of input weights in Extreme Learning Machines,”
Proceedings of ELM2014, Accepted, vol. arXiv:1406.2889, 2014.

[2]. M. D. McDonnell, M. D. Tissera, A. van Schaik, and J. Tapson, “Do we need deep networks? Pushing the envelope
with Extreme Learning Machines,” Submitted, 2014.
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* Image Classification
— MNIST (10 Classes)

* 60,000 Training and 10,000 Test Images

* 28 x 28 Greyscale
— CIFAR-10 (10 Classes)

* 50,000 Training and 10,000 Test Images

* 32 x 32 RGB, treated as one image in our experiments, 32 x 32 x 3

— SVHN (Google Street View House Numbers)

* 73,257 Training images used

* 32 x 32 RGB, converted to greyscale in our experiments, 32 x 32
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Classification error rates on MINIST for increasing number of hidden layers
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[1]. All data was calculated as the average over 10 repeats for each condition.
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Classification error rates on MINIST for increasing total number of hidden units
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[1]. All data was calculated as the average over 10 repeats for each condition.




Training time on MNIST as the total number of hidden units increased
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Results — CIFAR 10
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Classification error rates on CIFAR-10 for increasing total number of hidden units
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Results — SVHN
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Classification error rates on SVHN dataset for increasing total number of hidden units
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We have presented a method for synthesising deep neural networks using Extreme
Learning Machines (ELMs) as a stack of supervised autoencoders.

Using standard multi-class image classification benchmark tasks, we show that the
classification error rate can progressively improve with inclusion of additional
layers.

Very good performance on MNIST in very short time
* 98% accuracy in less than 2 minutes
* 99% accuracy in less than 10 minutes

The method can potentially be applied in a resource-constrained hardware
implementation to advantages in terms of significantly reduced network training
time and memory usage.
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Questions?
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Thank you!

Deep Extreme Learning Machines: Supervised
Auto-Encoding Architecture for Classification

Migel D. Tissera
migel.tissera@mymail.unisa.edu.au



