

Australian Government Department of Defence Defence Science and Technology Organisation

Transcranial Direct Current Stimulation: Implications for Command in the Australian Defence Force

Steven E Davis & Glen Smith*

steven.davis@dsto.defence.gov.au

Decision Sciences MSTC Joint and Operations Analysis Division

* Presenter at Neuroscience 15 January 2015 Science and Technology for Safeguarding Australia

B. L. U. F. / Overview

- tDCS (transcranial direct current stimulation) is acceptably safe to use
- Considerable potential for use in the ADF to support:
 - C2 decision making
 - Education and training
 - Manpower efficiency
 - Individual warfighter capability
- Planning, policy, and more research is required in some areas.

What is tDCS?

- Transcranial Direct Current Stimulation (tDCS)
- Non-invasive technique
- Applies direct current (DC) to the head
- Level of electricity less than the amount required to power a small torch
- Can enhance a number of cognitive and motor areas
- Verum & Sham stimulation (deals with 'placebo')

Image source: http://www.neuroconn.de/dc-stimulator_plus_en/

....

DSTO

DSTO

Potential for use in Defence

- New directions in human factors research
- Directly increase human capability
- Enhances areas of cognition and motor performance directly relevant to ADF
- Increase warfighter capability and C2 decision making
- Improve manpower efficiencies and reduce requirements

Increasing survivability

Area	Reference	Conclusion
Threat detection	Medina et al. (2012)	Active group displayed faster reaction
		times than reverse polarity and sham
		groups
Deceptive	Karim et al. (2010)	Active group were better at deceiving
capabilities		than sham
Hunger resistance	Goldman et al. (2011)	Active group displayed a larger change
		in inability to resist food than sham
Reflexes	Jacobson et al.	Active group exhibited quicker reaction
	(2011)	times than sham
Impulse control	Ditye et al. (2012)	Active groups displayed more careful
		(less impulsive) driving behaviour than
		baseline
Impulse control	Ditye et al. (2012)	Active groups displayed more careful (less impulsive) driving behaviour that

Motor enhancement: Reaction time

- Active tDCS group 32 milliseconds quicker than control group motor reaction time task*
- Difference between elite police officers and rookie police officers is around 13 milliseconds (Vickers & Lewinski, 2012).
- Therefore an improvement of 32ms could make a vital difference **

- * Experimental study from Pascual-Leone et al. (2012)
- ** Discussion of effect sizes from Levasseur-Moreau et al. (2013)

Physical (motor) enhancement

Area	Reference	Finding
Motor precision	Buetefisch et al. (2011)	Increased accuracy on highly demanding precision tasks, but no significant difference on less demanding tasks
Motor strength	Tanaka et al. (2009)	Active group displayed greater strength compared with reverse polarity and sham groups
Movement acceleration	Teo et al. (2011)	Active group reached higher peak acceleration level than baseline
Muscular endurance	Cogiamanian et al. (2007)	Active group displayed increased endurance compared with sham
Motor learning	Nitsche, Schauenburg, et al. (2003)	Active group were faster at executing implicitly learned sequences than participants in control groups
Everyday motor functions	Williams et al. (2010)	Active group were faster than sham

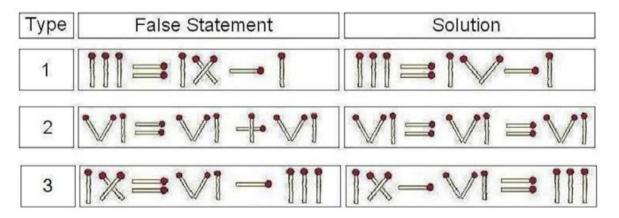
Perception

Area	Reference	Finding
Vision	Kraft et al.	Anodal group yielded a significant increase in
	(2010)	contrast sensitivity within 8° of the visual field
		compared with sham
Auditory	Tang and	Active stimulation degraded frequency
perception	Hammond	discrimination compared with sham
	(2013)	
Perception	Aslaksen et	Active group experienced an analgesic effect on
of pain	al. (2014)	high-intensity heat pain
Tactile	Ragert et	Active group displayed improved somatosensory
perception	al. (2008)	discrimination compared with sham
Science and Technology for Safeguarding		

Cognitive enhancement: Insightful decision making

Chi & Snyder (2011) "Facilitate insight by non-invasive brain stimulation"

• Investigated whether non-invasive brain stimulation can facilitate insight


Insight problem:

....

9

....

...

- Results (Type 2 questions):
 - 20% of control group able to solve type 2 problem
 - 60% of active group solved type 2 problem

Cognitive enhancement: Decision making

Area	Reference	Finding
Problem	Chi and	Active group was three times more likely
solving	Snyder (2011)	to solve the problem than sham group
Planning	Dockery et al.	Anodal group completed the task faster
	(2009)	than sham, and cathodal group completed
		the task more accurately than sham
Probabilistic	Hecht et al.	Active group were quicker to select the
assessment	(2010)	most frequent alternative compared with
		control groups

10 Science and Technology for Safeguarding Australia

Cognitive enhancement: Memory

Area	Reference	Finding
Working memory	Gladwin et al. (2012)	Healthy subjects were faster when they received active tDCS compared with sham
	Jeon and Han (2012)	Active group displayed enhanced working memory compared with sham
	Flöela et al. (2012)	Active group displayed higher level of accuracy than sham
Declarative memory	Marshall et al. (2004)	Anodal stimulation during SWS-rich sleep increased the retention of word pairs, compared with sham and stimulation during wake period
Long term memory	Javadi and Cheng (2012)	Anodal stimulation resulted in significantly more words recognized compared with cathodal and sham stimulation

11 Science and Technology for Safeguarding Australia

Cognitive enhancement: Learning

Area	Reference	Finding
Associative learning	Flöel et al. (2008)	Active group displayed faster associative learning
		than sham
Categorization learning	Ambrus et al. (2011)	Active groups displayed decreased performance in
		categorization of prototypes

- USAF use described in Scientific American (2011):
 - Found that learning time (of complex drone guiding task) was cut in half by delivering 30 minutes of tDCS
 - "TDCS not only accelerated learning, pilot accuracy was sustained in trials lasting up to 40 minutes" - Andy McKinley et al. (Air Force Research Laboratory at Wright - Patterson Air Force Base)
- DARPA experiments described in New Scientist (2012):
 - Training became easier for participants who describe "flow" state
 - tDCS cut the time required to reach pro level of marksmanship by half

Cognitive enhancement: Attention

Area	Reference	Finding
Sustained attention	Nelson et al. (2013)	Active group displayed enhanced accuracy, but slower
		reaction time
Focused attention	Bolognini et al. (2011)	Active group displaced improved attention
Selective attention	Clark et al. (2012)	Active group identified more correct targets, experienced
		fewer false alarms, and completed the task quicker than
		sham
Spatial attention	Loftus and Nicholls (2012)	Active group demonstrated reduction in pseudoneglect
		compared with control groups
Attentional switch	Vanderhasselt et al. (2006)	Active group switched attention faster than sham

DSTO

Safety

- Thousands of people have participated in tDCS across hundreds of studies
- Most severe adverse effects found was skin abrasions under the electrodes
- No other serious or ongoing side effects
- The most commonly reported incidents of minor discomfort (Brunoni et al., 2011):
 - Mild itching/burning sensation (most common)
 - Mild headaches (primarily in frequent headache sufferers)
 - Fatigue (uncommon)
 - Nausea (rare)

14 **I** Science and Technology for Safeguarding Australia

Risk

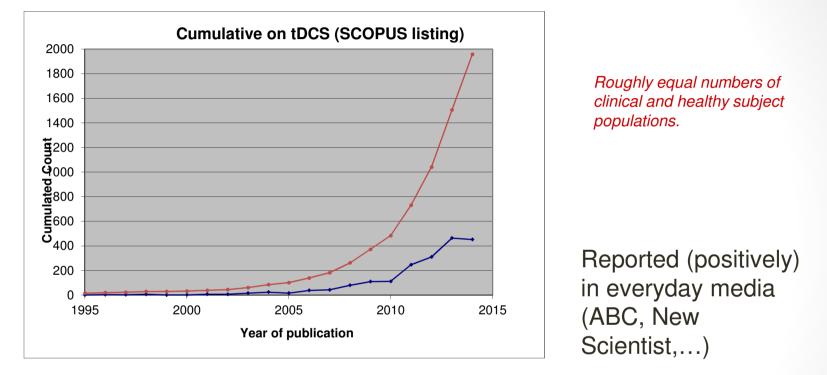
• Risk factors:

- Precise path of current not well understood
- Current often flows into adjacent brain regions causing unwanted effects
- Individual differences
- Second Order effects
- Untested in military environment
- Possibility of unanticipated effects research needed
- Dangerous in certain situations (e.g. combat)

Mood and personality

Paper	Area Influenced by Stimulation
Fecteau, et al. (2007)	Risk-taking and reward seeking behaviour
Priori et al. (2008)	Neural mechanisms associated with lying and
	deception
Ferrucci et al. (2009)	Depression, poor mood, and sadness
Young et al. (2010)	Capacity to make moral judgements when
	judging attempted harms
Maeoka et al. (2012)	Emotional aspects associated with pain

- Ethics of changing people's moral thought and behaviour
- Question of unpredictable behaviour and decision making in dangerous military situation


Private use in Defence

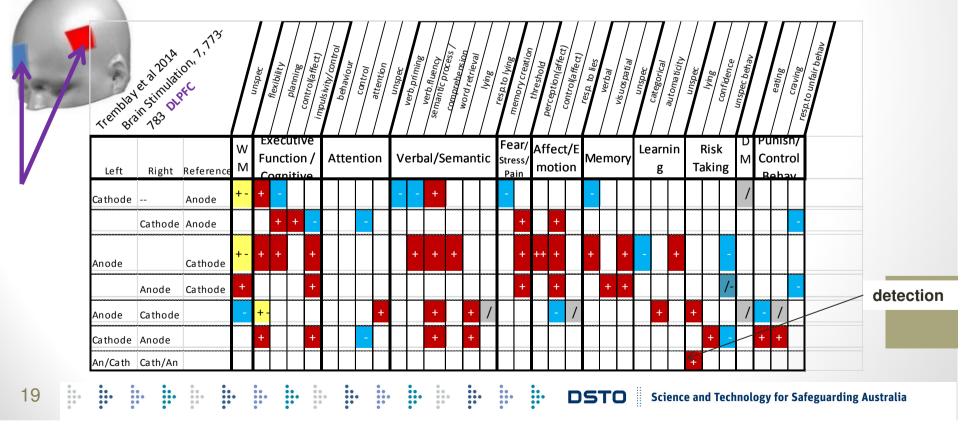
Reasons self-administering tDCS is likely:

- tDCS is becoming more popular and well known
- Easy to buy online or find DIY instructions
- Warfighters more likely to experiment
- Why it's an issue:
 - Lack of safety features and component redundancy
 - Lack of safe administration guidelines
 - Lack of knowledge of appropriate electrode montages (some can be dangerous)

Research effort to date

It's new, in current form. (but builds on centuries of physiology and electricity investigation)

2000 papers in 15 years and climbing (because it works)


Only a couple of instances of other than transient Adverse Effect from single application in *scientific* literature – skin redness, small lesion

DSTO

tDCS to DorsoLateralPreFrontal Cortex

"The uncertain outcome of prefrontal tDCS" Tremblay et al 2015 review

"... tDCS over DLPFC affects a wide array of cognitive functions, with sometimes apparent conflicting results"

Future directions

- Defence research program into the technology focusing on research areas of interest to ADF
- Developing Defence policy and doctrine
- Eventual use:
 - Motor enhancement
 - Perception
 - Survivability related areas
- Suitable areas for use in the near future:
 - Training/education
 - Command and control

Brain functions that can be enhanced (so far...)

- Simple picture naming
- Memory for words
- Recalling people's names
- Remembering location of objects
- Increase in duration of vigilance (radar watching)
- Episodic memory
- Manual dexterity/ Motor learning
- Prototype learning
- Focussed Attention ("in the zone")
- Working memory (hold and process several elements of information for a purpose)
- Detection of covert threats (especially in novices)
- Verbal fluency
- Planning
- Analogical reasoning
- Solving insight problems
- Risky choice reduction
- Cognitive bias adjustment
- BUT, look for negative effects, second order effects,

.

- tolerance, individual differences,
- RESEARCH needed.

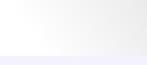
21

....

....

.

.



....

....

.

....

DSTO

Further information

Contact:

<u>steven.davis@dsto.defence.gov.au</u> or <u>glen.smith2@dsto.defence.gov.au</u>

Paper:

Davis, S. E., and Smith, G. A. (2014). Ethical and Safety Considerations of Transcranial Direct Current Stimulation Use in the Military. DSTO-DP-1272. *Joint & Operations Analysis Division. Defence Science and Technology Organisation.*